# ELECTRIC FIELD FROM A POINT SOURCE IN THE ZONE <br> OF A WELL WITH CONSIDERATION OF THE STRAINED 

STATE OF THE BED
V. I. Tarakanov

UDC 550.839; 071.1

We will investigate an electric field from a point source in an unbounded space having a cylindrical channel with consideration of inhomogeneous strain of the medium. An analogous problem but without consideration of the strained state of the medium was investigated in [1, 2] with reference to problems of electrical prospecting of wells. The need to take into account the strained state of the medium is related with the fact that experimental studies [3-5] indicate a considerable dependence of the electrical conductivity of a number of materials of practical interest on their strained state.

1. Since the strained state of a material is determined by the strain tensor $\varepsilon_{i j}$, the electrical conductivity of the material should be some function of this tensor. This dependence should be invariant relative to the choice of the coordinate system, i.e., the conductivity should also be some tensor $k_{i j}$ and be associated by a functional relation with the strain tensor $\varepsilon_{i j}$.

The most general form of such a functional tensor relation is [6]

$$
\begin{equation*}
k_{i j}=F\left(A_{1}, A_{2}, A_{3}\right) \delta_{i j}+\Phi\left(A_{1}, A_{2}, A_{3}\right) \varepsilon_{i j}+W\left(A_{1}, A_{2}, A_{3}\right) \varepsilon_{i j} i^{2} \tag{1.1}
\end{equation*}
$$

where $F, \Phi, W$ are arbitrary functions; $A_{i}, A_{2}, A_{3}$ are invariants of tensor $\varepsilon_{i j} ; \delta_{i j}$ is a unit tensor. Considering the strains $\varepsilon_{\mathrm{ij}}$ to be small, we can linearize functional relation (1.1). After expanding (1.1) in series and limiting ourselves to term of the first order of smallness, we obtain

$$
\begin{equation*}
k_{i j}=(\alpha+\delta \theta) \delta_{i j}+\gamma \varepsilon_{i j} \tag{1.2}
\end{equation*}
$$

where $\alpha, \delta, \gamma$ are constant moduli; $\theta=\varepsilon_{11}+\varepsilon_{22}+\varepsilon_{33}$ is the first invariant of tensor $\varepsilon_{i j} ; \alpha$ is the electrical conductivity in a state taken to be unstrained.

The coefficients $\delta, \gamma$ characterize the effect of the strain of the material on its conductivity. The coefficients $\delta, \gamma$ must be found experimentally, whereby two experiments on measuring the conductivity in uniform and uniaxial compression are sufficient for finding them.

Thus, on the basis of (1.2) the current density $\mathbf{i}$ in the strained medium is

$$
\begin{equation*}
\mathbf{i}=k_{i j} ; u \tag{1.3}
\end{equation*}
$$

where $u$ in the electric field potential.
The equation of a constant electric field in a deformable medium on the basis of (1.2) and (1.3) will be

$$
\begin{equation*}
\nabla k_{i j} \nabla u=0 \tag{1.4}
\end{equation*}
$$

2. With consideration of the dependence of the conductivity of the material on the strained state established above the problem has the following statement: it is required to find the electric field from a de point source I in an unbounded space with a cylindrical channel of radius $r_{0}$, the source being located on the channel axis. The electrical conductivity of the medium depends on its strained state which arises due

Tomsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 187-191, November-December, 1971. Original article submitted May 18, 1971.

[^0]

Fig. 1
to the pressure of uniform compression at infinity $p_{2}$ and pressure in the channel $p_{1}$. The channel is filled with fluid with electrical conductivity $\sigma$. This statement of the problem is possible if an electric probe is in a well filled with drilling fluid, whereby the thickness of the bed is much greater than the well radius and much less than the depth of occurrence of the bed. In this case the bed can be regarded as unbounded and under the effect of pressure $p_{2}$ at infinity equal to the rock pressure of the overlying soillayers. Pressure $p_{1}$ corresponds to the pressure of the drilling fluid in the region of the bed.

The problem is solved on the assumption that the material of the medium is linearly elastic and the stress tensor $\sigma_{i j}$ is associated with the strain tensor $\varepsilon_{i j}$ by the relation

$$
\begin{equation*}
\sigma_{i j}=\lambda \theta \delta_{i j}+2 \mu \varepsilon_{i j} \tag{2.1}
\end{equation*}
$$

Here $\lambda, \mu$ are the Lamé constants. The boundary conditions of the elastic problem have the following form in cylindrical coordinates:

$$
\begin{array}{ccr}
\sigma_{r z}=0, & \sigma_{y r}=-p_{1} & \left(r=r_{0}\right) \\
\sigma_{r z}=0, & \sigma_{r r}=-p_{z} & (r \rightarrow \infty)  \tag{2.2}\\
\sigma_{r z}=0, & \sigma_{z z}=-p_{2} & (z \rightarrow \pm \infty)
\end{array}
$$

By virtue of axial symmetry and the boundary conditions there will exist in the medium three nontrivial components of the stress tensor $\sigma_{\mathrm{rr}}, \sigma_{\mathrm{ZZ}}, \sigma_{\varphi \varphi}$ and three nontrivial components of the strain tensor $\varepsilon_{r r}, \varepsilon_{Z Z}, \varepsilon_{\varphi \varphi}$. The components of the displacement vector in radial and axial directions $u_{r}, u_{z}$ satisfying the equations of the axisymmetric elasticity theory and boundary conditions (2.2) have the form

$$
\begin{equation*}
u_{r}=-\frac{p_{2}}{3 \lambda+2 \mu} r-\frac{p_{2}-p_{1}}{2 \mu} \frac{r_{0}^{2}}{r}, \quad u_{z}=-\frac{p_{2}}{3 \lambda+2 \mu} z \tag{2.3}
\end{equation*}
$$

The components of the strain tensor corresponding to the displacement vector (2.3) will be

$$
\begin{gather*}
\varepsilon_{r r}=-\frac{p_{2}}{3 \lambda+2 \mu}+\frac{p_{2}-p_{1}}{2 \mu} \frac{r_{0}^{2}}{r^{2}} \\
\varepsilon_{\varphi \varphi}=-\frac{p_{2}}{3 \lambda+2 \mu}-\frac{p_{2}-p_{1}}{2 \mu} \frac{r_{0}^{2}}{\dot{r}^{2}}  \tag{2.4}\\
\varepsilon_{z z}=-\frac{p_{2}}{3 \lambda+2 \mu}, \quad \varepsilon_{r z}=\varepsilon_{r \varphi}=\varepsilon_{z \varphi}=0
\end{gather*}
$$

3. On the basis of (1.2), (2.4) the conductivity tensor for region $r>r_{0}$ is written

$$
\begin{gather*}
k_{r r}=\alpha-(3 \delta+\gamma) \frac{p_{2}}{3 \lambda+2 \mu}+\gamma \frac{p_{2}-p_{1}}{2 \mu} \frac{r_{0}^{2}}{r^{2}} \\
k_{\psi \varphi}=\alpha-(3 \delta+\gamma) \frac{p_{2}}{3 \lambda+2 \mu}-\gamma \frac{p_{2}-p_{1}}{2 \mu} \frac{r_{0}^{2}}{r^{2}}  \tag{3.1}\\
k_{z z}=\alpha-(3 \delta+\gamma) \frac{p_{2}}{3 \lambda+2 \mu}, \quad k_{r z}=k_{r \varphi}=k_{\tau \varphi}=0
\end{gather*}
$$

The equation for the distribution of the electric potential $u_{2}$ in region $r>r_{0}$ on the basis of (3.1), (1.4) after introducing the dimensionless parameters $p=r / r_{0, ~}=z / r_{0}$ will take the form

$$
\begin{equation*}
\left(1-\frac{b}{\rho^{2}}\right) u_{2, \rho \rho}+\frac{u_{2, \rho}}{\rho}\left(1+\frac{b}{\rho^{2}}\right)+u_{2, \xi \xi}=0 \tag{3.2}
\end{equation*}
$$

Here b is a dimensionless parameter

$$
\begin{equation*}
b=-\frac{\gamma(3 \lambda+2 \mu)}{\alpha(3 \lambda+2 \mu)-(3 \delta+\gamma) p_{2}} \frac{p_{2}-p_{1}}{2 \mu} \tag{3.3}
\end{equation*}
$$

In the absence of a pressure drop $p_{2}-p_{1}, b=0$ and the Laplace equation is obtained for the distribution of the electric field. On finding the particular solutions of Eq. (3.2) by the method of separation of variables the following expression is obtained:

$$
\begin{equation*}
u=\left[C_{1} I_{0}\left(\gamma \sqrt{\rho^{2}-b}\right)+C_{2} K_{0}\left(\gamma \sqrt{\rho^{2}-b}\right)\right] \cos \Upsilon \xi \tag{3.4}
\end{equation*}
$$

Here $I_{0}, K_{0}$ are Bessel functions of an imaginary argument of the first and second kind; $C_{1}, C_{2}$ are constants of integration. In the region $r<r_{0}$ filled with fluid with conductivity $\sigma$ the potential $u_{1}$ satisfies the equation

$$
\begin{equation*}
u_{1, \rho p}+\frac{u_{1, \rho}}{\rho}+u_{1, \xi \xi}=0 \tag{3.5}
\end{equation*}
$$

It is required to find the electric potential satisfying Eq. (3.5) in region $r<r_{0}$ and Eq. (3.2) in region $r>r_{0}$, whereby at the boundary $\rho=1$ the coupling conditions, which consist in equality of the potentials $u_{1}$, $u_{2}$ and equality of the normal components of the current through the cylindrical surface $\rho=1$, should be fulfilled:

$$
\begin{equation*}
u_{1}=u_{2}, \quad \sigma u_{1, \rho}=\left[\alpha-(3 \delta+\gamma) \frac{p_{2}}{3 \lambda+2 \mu}+\gamma \frac{p_{2}-p_{1}}{2 \mu}\right] u_{2, \mathrm{e}} \tag{3.6}
\end{equation*}
$$

The point source I is located at point $\rho=0, \xi=0$, and therefore the potential $u_{1}$ should have at this point a singularity corresponding to the singularity of the point source, which is located in an unbounded homogeneous space with conductivity $\sigma$, i.e., at point $\rho=0, \xi=0$ the potential $u_{1}$ should have the singularity [1, 7]

$$
\begin{equation*}
u_{1}=\frac{I}{4 \pi \delta r_{0} \sqrt{\rho^{2}+\xi^{2}}}\left[1+o\left(\frac{1}{\sqrt{\rho^{2}+\xi^{2}}}\right)\right] \tag{3.7}
\end{equation*}
$$

The potential should approach zero with distance from the source:

$$
\begin{equation*}
u_{1} \rightarrow 0, \quad \xi \rightarrow \pm \infty ; \quad u_{2} \rightarrow 0, \quad \sqrt{\rho^{2}+\xi^{2}} \rightarrow \infty \tag{3.8}
\end{equation*}
$$

4. The general solutions of Eqs. (3.2) and (3.5) with consideration of the boundary conditions and coupling conditions are selected in the form

$$
\begin{gather*}
u_{1}=\int_{0}^{\infty} C(\gamma) K_{0}(\gamma \rho) \cos \tau \xi d \tau+\int_{0}^{\infty} A(\gamma) I_{0}(\gamma \rho) \cos \gamma \xi d \tau  \tag{4.1}\\
u_{2}=\int_{0}^{\infty} B(\gamma) K_{0}\left(\gamma \sqrt{\rho^{2}-b}\right) \cos \gamma \xi d \gamma \tag{4.2}
\end{gather*}
$$

With the use of the known integral relation [8]

$$
\int_{0}^{\infty} K_{0}(\gamma \rho) \cos \gamma \xi d \gamma=\frac{\pi}{2} \frac{1}{\sqrt{\rho^{2}+\xi^{2}}}
$$

we can fulfill the condition at the singular point $\rho=0, \xi=0$, having set

$$
\begin{equation*}
C(\gamma)=\frac{I}{2 \pi^{2} r \omega \tau} \tag{4.3}
\end{equation*}
$$

To determine coefficients $\mathrm{A}(\gamma), \mathrm{B}(\gamma)$ it is sufficient to use the coupling conditions at the boundary $\rho=1$, which, if we introduce notation, are written

$$
\begin{gather*}
\beta=\sqrt{1-b}, \quad s=\frac{\sigma(3 \lambda+2 \mu)}{\alpha(3 \lambda+2 \mu)-(3 \delta+\gamma) p_{2}}  \tag{4.4}\\
\int_{0}^{\infty}\left[\frac{I}{4 \pi^{2} r_{0} \sigma} K_{0}(\gamma)+A(\gamma) I_{0}(\gamma)-B(\gamma) K_{0}(\gamma \beta)\right] \cos \gamma \xi d \gamma=0  \tag{4.5}\\
\int_{0}^{\infty}\left[s A(\gamma) I_{1}(\gamma)-\frac{s I}{4 \pi^{2} r_{0} \sigma} K_{1}(\gamma)+\beta B(\gamma) K_{1}(\gamma \beta)\right] \cos \gamma \xi d \gamma=0 \tag{4.6}
\end{gather*}
$$

Equating the integrands of (4.5), (4.6) to zero, we obtain the following expressions for the functions:

$$
\begin{gather*}
A(\gamma)=\frac{I}{2 \pi^{2} r_{0} \sigma} \frac{s K_{1}(\gamma) K_{0}(\gamma \beta)-\beta K_{0}(\gamma) K_{1}(\gamma \beta)}{\beta I_{0}(\gamma) K_{1}(\gamma \beta)+s I_{1}(\gamma) K_{0}(\gamma \beta)} .  \tag{4.7}\\
B(\gamma)=\frac{s I}{2 \pi^{2} r_{0} \beta \beta} \frac{1}{\gamma\left[\beta I_{0}(\gamma) K_{1}(\gamma \beta)+s I_{1}(\gamma) K_{0}(\gamma \beta)\right]} \tag{4.8}
\end{gather*}
$$

Thus the distribution of the potentials $u_{1}, u_{2}$ is given by the formulas

$$
\begin{gather*}
u_{1}=\frac{I}{2 \pi^{2} r o \sigma}\left\{\int_{0}^{\infty} K_{0}(\gamma \rho) \cos \gamma \xi d \gamma+\int_{0}^{\infty} \frac{s K_{1}(\gamma) K_{0}(\gamma \beta)-\beta K_{0}(\gamma) K_{1}(\gamma \beta)}{\beta I_{0}(\gamma) K_{1}(\gamma \beta)+s I_{1}(\gamma) K_{0}(\gamma \beta)} I_{0}(\gamma \rho) \cos \gamma \xi d \gamma\right\}  \tag{4.9}\\
u_{2}=\frac{s I}{2 \pi^{2} \gamma \sigma \sigma \beta} \int_{0}^{\infty} \frac{K_{0}\left(\gamma \sqrt{\rho^{2}-b}\right) \cos \gamma \xi d \gamma}{\gamma\left[\beta I_{0}(\gamma) K_{1}(\gamma \beta)+s I_{1}(\gamma) K_{0}(\gamma \beta)\right]} \tag{4.10}
\end{gather*}
$$

We see from (4.9), (4.10) that the distribution of the potential to within the factor depends on two dimensionless parameters $s, \beta$, whereby when $\beta=1$ a pressure drop $p_{2}-p_{1}$ is absent and the solution known from the literature [1] is obtained.

The integrals of (4.9), (4.10) are convergent, since the integrands have a logarithmic singularity and do not have poles. Actually, if at some point $\gamma_{0}$ the integrand had a pole, the relation

$$
\begin{equation*}
\frac{s}{\beta}=-\frac{I_{0}\left(\gamma_{0}\right) K_{1}\left(\gamma_{0} \beta\right)}{T_{1}\left(\gamma_{0}\right) K_{0}\left(\gamma_{0} \beta\right)} \tag{4.11}
\end{equation*}
$$

would be fulfilled.
But for any $\gamma$

$$
I_{0}(\gamma)>0, I_{1}(\gamma)>0, \quad K_{0}(\gamma)>0, \quad K_{x}(\gamma)>0
$$

By definition $s>0, \beta>0$, and (4.11) cannot be fulfilled.
If a point source of power I were in a homogeneous medium with electrical resistance $R_{\infty}$

$$
\begin{equation*}
R_{\infty}=\frac{3 \lambda+2 \mu}{\alpha(3 \lambda+2 \mu)-(3 \delta+\gamma) p_{2}} \tag{4.12}
\end{equation*}
$$

its potential $u_{3}$ would be given by the formula

$$
\begin{equation*}
u_{3}=\frac{I R_{\infty}}{4 \pi r_{0} \sqrt{\rho^{2}+\xi^{2}}} \tag{4.13}
\end{equation*}
$$

The ratio of the measured potential $u_{1}$ to the potential $u_{3}$ at this point is in the terminology of [1] the relative apparent resistance

$$
\begin{equation*}
\frac{u_{1}}{u_{2}}=\frac{R}{R_{\infty}}=\frac{2}{\pi}\left\{\sqrt{\rho^{2}+\xi_{\xi}^{2}}\left\{\int_{0}^{\infty} K_{0}(\gamma \rho) \cos \gamma \xi d \gamma+\int_{0}^{\infty} \frac{s K_{1}(\gamma) K_{0}(\gamma \beta)-\beta K_{0}(\gamma) K_{1}(\gamma \beta)}{\beta I_{0}(\gamma) K_{1}(\gamma \beta)+s I_{1}(\gamma) K_{0}(\gamma \beta)} I_{0}(\gamma \rho) \cos \gamma \xi d \gamma\right\}\right. \tag{4.14}
\end{equation*}
$$

The value of the ratio $R / R_{\infty}$ on the channel axis $\rho=0$ was calculated for various values of parameters $s, \beta$ and for different $\xi$. Figure 1 shows the curves of the relative apparent resistance $R / R_{\infty}$ for values of $\mathrm{s}, \beta$ equal to $0.1-1.3,0.1-1.0,0.1-0.7,1-1.3,1-1,1-0.7,5-0.7,5-1,5-1.3$ (curves $1-9$ respectively).

We see from the figure that for large distances from the source the apparent resistance measured along the well axis approaches the resistance of the medium at infinity regardless of the values of $s, \beta$.

For small distances from the source the apparent resistance approaches the resistance of the medium in the region $r<r_{0}$. For intermediate distances the apparent resistance is affected by the difference in the resistances of the two zones and by the inhomogeneity of the strained state of the zone when $r>r_{0}$. The strained state of the zone $r>r_{0}$ affects the distribution of the potential owing to a change of resistance at infinity from uniform compression according to Eq. (4.12) and owing to distortion of the configuration of the curves of the apparent resistance by virtue of the inhomogeneity of the strained state characterized by deviation of the parameter $\beta$ from unity.

## LITERATURE CITED

1. V. N. Dakhnov, Electrical and Magnetic Methods of Investigating Wells [in Russian], Nedra, Moscow (1967).
2. V. A. Fok, Well Logging Theory [in Russian], Gostekteoretizdat, Moscow-Leningrad (1933).
3. I. F. Glumov and V. N. Dobrynin, "Change of electrical resistance of waterlogged rocks under the effect of rock and formation pressure," in: Applied Geophysics [in Russian], Gostoptekhizdat, Moscow (1962).
4. U. I. Moiseenko, V. E. Istomin, and G. D. Ushakov, "Effect of unilateral pressure on electrical resistance of rocks," Dokl. Akad. Nauk SSSR, 154, No. 2 (1964).
5. É. I. Parkhomenko, Electrical Properties of Rocks [in Russian], Nauka, Moscow (1965).
6. L. I. Sedov, Introduction to Fluid Mechanics [in Russian], Fizmatgiz, Moscow (1962).
7. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1966).
8. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products [in Russian], Fizmatgiz, Moscow (1962).

[^0]:    © 1974 Consultants Bureau, a division of Plenum Publishing Corporation, 227 W'est l7th Street, New York, V. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

